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Strength-probability-time (SPT) 
relationships in ceramics 
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The concept of the SPT diagram for ceramics is introduced as an essential aid to the 
design engineer when using engineering ceramics. For given conditions of stress state and 
distribution, environment, temperature and component size, the diagram enables estimates 
of a safe working stress to be made for specific component lifetimes and survival 
probabilities. The theory underlying the SPT diagram is reviewed. This involves the 
merging of the concepts of statistical variations in strength, with sub-critical crack 
growth which leads to delayed fracture. It is shown how the SPT diagram can be 
generated by simple measurements of the strain rate dependence of fracture strength. 
Data for the delayed fracture of alumina are used to demonstrate the reliability of 
SPT diagram. 

1. introduction 
As the widespread use of ceramics as engineering 
components becomes increasingly likely, it is 
clear that the materials scientist is to some extent 
failing in his duty to supply the design engineer 
with mechanical property data in the most 
appropriate form. This leads to ad hoc and 
iterative design procedures, the efficiency of 
which could be greatly enhanced by the improved 
presentation of data. By far the most common 
strength test is the measurement of modulus of 
rupture: a bar is broken in three- or four-point 
bending and the strength is quoted as the maxi- 
mum tensile stress sustained by the specimen. 
This is a simple test to perform and is very useful 
for a rapid evaluation of materials on a com- 
parative basis. Furthermore, basic theory has 
been developed to a stage where there is an 
excellent fundamental understanding of strength 
in terms of microstructural parameters [1-3]. 

However, this information is of limited use to 
the design engineer. Additionally, information is 
required on the statistical variation in strength 
or probability of failure at a particular stress 
level; effects of static and dynamic fatigue; 
effects of enviromnent and temperature; and 
effects of multiaxial stresses. All of these are 
being actively studied at present. It is the purpose 
of this paper to describe how information on the 
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first two areas can be presented on a strength- 
probability-time (SPT) diagram using informa- 
tion derived from simple experimental techniques 
In this way, a component operating under known 
conditions of stress state, environment and 
temperature can be designed with regard to 
component lifetime and acceptable probability 
of failure. Considerations of statistical variations 
of strength, and stress intensity factor/crack 
velocity data are required and these are discussed 
below. 

2. Statistical variations in strength 
The strength (~0 of ceramics is controlled 
generally by the stress to propagate small micro- 
structural flaws, which are invariably present, 
according to a modified Griffith equation, 

1 {2E7i~ § 
= \---C-) (1) 

where Y is a geometrical constant, E Young's 
modulus, 7i an effective surface energy, and C 
a flaw size. Because a given ceramic will have a 
range of flaw sizes there will be a corresponding 
variation in strength. In principle, one could 
rationalize this in terms of the variables in 
Equation 1 but this has yet to be achieved. 
Fortunately, an empirical statistical analysis is 
available and that of most widespread (but not 
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universal) applicability is the weakest link model 
due to WeibuU [4, 5]. 

P = exp - D , (2) 
\ ~o / J  

where P is the survival probability, D the stressed 
volume, au the zero probability stress, ~0 a 
normalizing constant, and m the Weibull modu- 
lus. Thus 

1 
In In ~ = m In (crf - Cru) - m In ~o + In D. (3) 

Intuitively, eu = 0 and this is often found 
experimentally. A plot of In In lIP versus In ~r 
thus gives the Weibull modulus m. (Should this 
treatment not yield a straight line relationship, 
then other statistical functions, such as normal or 
log normal strength variations, may be appro- 
priate [6].) As an example of a material showing 
a Weibull distribution of strength, Fig. 1 gives 

99 ~ i l i i---- 

98 

O 

9 s  

gO 
_J 

so 
O 

7 0  -~ o. 
6 0  

J 
SO 
4 0  

m 20 0 ~ 0  
I0 
5 

I 
l [ I I i 

0-7 0 . 8  0 .9  I.O I.I 1.2 1.3 
S T R E N G T H / M E A N  STRENGTH 

Figure 1 A Weibull distribution of strength for tensile 
/ 

specimens of Refel SiC [7]. 

data for Refel SiC tested under tension [7]. A 
reasonable straight line relationship is found, 
giving a Weibull modulus m of 10 which is 
typical for good quality ceramics. The above 
discussion relates only to short term strength. 
The effect of time under stress is considered 
next. 

3, Time-dependent failure 
A wide range of materials, including ceramics, 
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exhibits the phenomenon of delayed fracture or 
static fatigue [8-12]. Under the application of 
stress less than that to induce short term failure, 
there is a regime where sub-critical crack growth 
can occur leading to failure in finite times. The 
effect is believed to be due to a stress-depen- 
dent chemical interaction between the material 
and its environment. Water, for example, has a 
pronounced deleterious effect on the strength of 
glass and alumina. Recent theoretical and experi- 
mental work in this area has demonstrated that 
time-dependent failure characteristics can be 
understood and predicted in a quantitative way 
by considelation of crack velocity/stress in- 
tensity factor data. 

Rearranging Equation 1 and defining a critical 
stress intensity factor Kie as (2E7i) ~ 

KIe --- Y(r~ Ce § (4) 

where the subscript c refers to the critical con- 
dition. New test methods have been evolved 
whereby the crack velocity (V) in a specimen 
can be recorded simply in terms of KI; a 
convenient method [14, 15] is the double torsion 
test. The important feature is that the strain 
energy release rate, at constant force, G (=27),  
is independent of crack length. Thus, unlike most 
other tests, there is no tendency for the crack to 
accelerate under a constant critical load and 
produce catastrophic failure. 

Data for alumina tested under ambient 
laboratory conditions are given in Fig. 2 [13]. 
There are two main regions: 

region I, V = ~1 KI ~ (5a) 

region II, V = ct 2 (5b) 

where the a's are constants. In region I, the rate 
of chemical reaction at the crack tip controls 
crack growth, whilst in region II diffusion of the 
corrosive species to the crack tip controls growth 
[8]. A region III is sometimes present but the 
fundamental rate controlling mechanisms are 
not fully understood at present. Also included in 
the diagram is the value of Kie 

The K-V diagram can thus be obtained by 
straightforward experimental techniques and the 
data are understood in terms of fundamental 
mechanisms. The significance of the diagram in 
terms of crack growth is as follows. A particular 
specimen has an initial flaw size C~. Application 
of a stress a produces a stress intensity factor 
KI (=  Yo- C ~) corresponding to a crack velocity 
V. In a standard strength evaluation test, say a 
bend test, C thus increases to give a higher KI 
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Figure 2 K-V diagram obtained from double torsion 
specimens for A1203 under ambient laboratory con- 
ditions [13]. 

and, in region I, a rapidly accelerating crack 
growth. When KI reaches a particular value, 
(which may be less than KIe, depending on the 
environment) owing to increases in C, cr or both, 
catastrophic failure occurs. 

Under constant or, of interest in a delayed 
fracture test, the time to failme, "T, is given by 

The time for 
Equation 4, 

i cio dC 
r OCi V (6) 

C > CIe is negligible. From 

2 ~ 2  dKi, (7) dC - ~2 

and substitution into Equation 6 gives 

~ Y~j  Kri (8) 

Recalling Equation 5, and defining K~* as the 
value separating regions I and II, 

r = ~2 ye  [o.1 JKi ,  KI( ' - " )  dKi  

+ a21 O K'*[K'~ K, dK~t} �9 (9) 

A third term corresponding to region III may be 
added but this is generally negligible. Depending 
on the environment the second term (region II) 
is often negligible. 

In a number of ceramics tested under ambient 
conditions, the time to failure is controlled 
solely by the behaviour in region I of the 32-V 
diagram and Equation 9 reduces to 

"T = ~ - - Y 2 a l  (n  - K ~ ? - ~  - K~* 2 -~  , ( 1 0 )  

and furthermore, because n is large (typically 
> 10), Kn 2-~ >> KI* 2.n, and 

2 Kn ~-~ 
"T = ~2 y2 % (n - 2) (11) 

4. The SPT  diagram 
The statistical effects can now be combined with 
the time-dependent failure analysis to give the 
SPT diagram. A given batch of N specimens will 
have a range of initial flaw sizes C1 to CN. For a 
particular specimen with a flaw size C~- (unknown 
until tested) the time to failure, combining 
Equations 4 and 11, is 

2 y2-n ~2-~ G(2-n)t2 az C/2-,)/2 (12) 
r = ~2 y2 % (n - 2) = cr ~ " 

Thus for specimens with the same intitial flaw 
size, and the same probability of instant failure, 

-r ~" = a 4. (13) 

A family of lines can thus be constructed on a 
Weibull strength/probability-of-survival graph 
corresponding to increasing failure times (Fig.3). 
Note that these are equi-spaced for equal 
logarithmic increases in failure time. An indi- 
vidual specimen stressed at r and failing in time 
.T~ is, therefore, equivalent to a specimen 
failing at stress % in a reference time %, as 
indicated in Fig. 3, according to 

O ' j /  "T O 

5. Delayed fracture tests and the relation 
to constant strain-rate tests 

For any stress/failure time combination it is 
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thus possible to normalize the data to time %. 
It follows, therefore, that if a set of stress/failure 
time data is generated for a sample population 
of specimens, and normalized to time %, then 
the statistical distribution of these normalized 
strengths should be related to that found from 
direct measurement of  the strength at a par- 
ticular strain-rate of a second sample population. 

A convenient method of generating the delayed 
fracture data is to stress specimens f rom a 
sample at low stresses corresponding to a very 
high probability of  survival. The stress is 
maintained for up to a fixed convenient time. 
Those specimens surviving are then stressed at 
a higher level, and the process repeated until all 
have failed. This assumes that the stressing at 
lower levels does not affect significantly the time 
to the failure at the ultimate failure stress. This, 
however, is essentially the same assumption used 
in deriving Equation 11. 

To relate the results obtained under conditions 
of  constant strain (or stress) rate to the delayed 
fracture data, it is necessary to calculate the 
characteristic time ~'e corresponding to the 
lifetime of a specimen stressed solely at ~rf, the 
strength under constant strain-rate. I f  the failure 
time under constant strain-rate is ~-*, then ~re 
-r* because in the constant strain-rate test there is 
little sub-critical crack growth until a is close to 
crf. 

For a given specimen "re ~ = cq under constant 
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stress. Under increasing stress the fraction of the 
specimen lifetime dt/-r spent at stress cr is dt crn/a 4. 
Thus integrating over time, 

I 
T* o .n  

1 = - -  d t .  (15)  
0 ~ 

Substituting a~ = rea~', and dt = -r* dcr/ar gives 

1 = ~ f  r*  a n 
0 re  err n+'----~ d~r. (16) J 

Thus, 

,T* 

~'e = - -  (17) 
n + l  

From Equation 17 the ratio of the charac- 
teristic times for tests under two strain-rates 
~1, ~ will equal the ratio of the times to failure 
(~5, %) at the two strain-rates. Thus for a given 
probability of failure (same initial flaw size) 

~q,2 = E~,2  "q,~ (18) 

where ~ ,2  are the strengths for a particular 
failure probability. Therefore, f rom Equation 13, 

o l n +  1 O - 2 n +  1 

= (19) 
Ed I Ed2 

o r  

( ~ ) n + l  = . (20)  
Cry/ 42 

Measurement of strength as a function of strain 
rate thus provides a simple way to estimate n 
A more rigorous mathematical approach leads 
to similar expressions to the above [16, 17]. 

6. Experimental and results 
A 95 ~ alumina was used, similar to that studied 
previously [18-20]. Specimens were machined to 
25 • 3 • 2.5 ram, and tested in three-point 
bending (20 m m  span) under ambient laboratory 
conditions. A batch of twenty-six specimens was 
broken under a strain-rate of 1.8 • 10 -6 sec -1 
(~2). Results are plotted in Fig. 4 which give a 
good fit to the Weibull distribution with a 
Weibull modulus of  13.2 and a mean strength 
of 361 M N  m -2. The time to failure at this mean 
stress is 60 sec. Two further batches each of nine 
specimens were broken under strain-rates of  1.8 
• 10 -8 and 1.8 • 10 -~ sec -~ (~1 ~3) (Fig. 4). 
Mean strengths are, respectively, 322 and 395 
M N  m-L In these cases the slope of the Weibull 
line has been drawn parallel to the ~2 data even 
though the best fit lines would be slightly dif- 
ferent. This is because of the greater confidence 
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Figure 4 Statistical variation in the strength of AiaO~ 
tested at three strain-rates. 

T A B L E  I Delayed fracture data 

Specimen Stress Failure time Oe (1 sec) Rank 
number (MN (sec) (MN m -2) 

m -z) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16 

17 
in the ~2 data, taken f rom a larger sample. The 18 
mean ratio of  strengths for an order of  magnitude 19 
change in strain-rate is 1.108, and use of  20 
Equation 20 gives n = 21.5. 

A batch of twenty-five similar specimens was 
broken under delayed fracture conditions, also 
in three-point bending and 20 mm span, under 
constant stresses in the range 260 to 310 M N  m ~2. 21 

22 
In cases where the specimen did not break in a 23 
conveniently short time (overnight or a week- 24 
end) the stress was increased by 10 M N  m -=, 
several times if necessary. Results are detailed in 
Table I. Where a specimen has been stressed at 
several levels the failure time is taken as that 25 
solely at the maximum stress. 

The relevant part  of  the K-V diagram was 
obtained from double torsion specimens 75 x 
25 x 3 m m  with a 0.5 mm deep guide groove. 
Data  over the crack velocity range 10 -a to 
10 .7 m sec -1 give the expected K a V n relation- 
ship in region I with n = 30 to 60. The bendover 
into region I t  occurs at V N 10 -a m sec -1. The 
equivalent yi value for the rapid propagation of 
the crack is 45 J m-2: 

7. The  N P T  diagram for a lumina 
The values of  n obtained f rom double torsion 
specimens are considerably greater than those 
f rom the strain-rate data. The former relate to 
the propagation of a large preformed crack and 
the latter to the initial stages in the propagation 
of the small inherent flaws. These flaws are 

305 5 327 4 
300 9000 457 23 
305 365 404 16 
305 185 389 12 
292 247 377 11 
295 60 357 7 
286 1080 395 14 
273 10 304 1 
275 2~60 390 13 
280 4680 414 20 
257 2 340 369 9 
274 45 327 3 
274 68 333 5 
275 69 334 6 
270 > 9 360 
280 30 326 2 
270 > 9 000 
280 > 5820 
290 6480 435 22 
270 5 040 398 15 
270 1010 370 10 
270 580 363 8 
270 > 60 660 
280 > t926(/ 
290 > 2880 
300 > 3 600 
310 48890 511 25 
282 2845 407 17 
270 16990 423 21 
270 7 850 408 18 
2713 > 71820 
280 > 3 060 
290 > 3 250 
300 17 675 472 24 
270 > 10150 
280 > 6030 
290 2450 413 19 

typically 50 iam deep and may grow 10 to 20 
~tm during the sub-critical range. Clearly the 
morphologies of  the inherent flaw and the 
preformed crack are not identical and it cannot 
be assumed that data f rom macroscopic cracks 
are relevant to the propagation of microscopic 
cracks. For MgO, yt shows a marked dependence 
on crack length and 7i increases by a factor of 
four as the crack size increases f rom one to ten 
grains [21 ]. There is no evidence for such marked 
behaviour in other ceramics and the "macro-  
scopic" ),i values lead to credible strength 
estimates with the flaw size related to grain size 
or pore size [1-3]. However, this argument does 
not necessarily apply to the current discrepancy 
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and it must be concluded that the surface energy 
requirements for the sub-critical propagation 
of the crack are significantly less than those 
calculated from the macroscopic data. For these 
reasons, therefore, and because identical speci- 
mens are used for the strain-rate and delayed 
fracture tests, the value of n from the strain-rate 
data is used to generate the SPT diagram. 

The SPT diagram is given in Fig. 5. The 
"anchor"  point is taken from the ~2 data at 361 
MN m -2, 50 ~ survival probability, and charac- 
teristic failure time 2.67 sec (calculated from 
Equation 17). The characteristic failure times at 
the 1 and 9 9 ~  survival probabilities are 3.10 
and 1.95 sec. Thus the slopes of the lines on the 
SPT plot are slightly less than the Weibull 
slope. The line spacings for decade steps in time 
correspond to stress ratios of 1.11, from Equa- 
tion 13. 

As a check on the applicability of the above 
analyses, the delayed fracture data have been 
used to estimate (from Equation 14) the equiva- 
lent failure stresses for each specimen for a 
standard failure time of 1 sec; these are indicated 
in Table I and have been ranked in increasing 
order of stress. These data when transposed on 
the SPT diagram should thus fall on the 1 sec 
line and Fig. 5 shows that the agreement is 
remarkably good. Ignoring the five points 
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corresponding to the strongest specimens, which 
will be discussed below, the remaining twenty 
points fall very close to the 1 sec line. The best 
fit line through these points would lie parallel 
to the 1 sec line and displaced to higher stress 
by a small factor, < 3 ~ .  

The points ranked 21 to 25 correspond to those 
specimens with failure times > 6000 sec, and 
only one other specimen, ranked 18, falls into 
this range. These data are equivalent to mean 
crack velocities ~ 10 .9 m sec -1 which are well 
outside the velocity range examined in this study 
and close to the limit of published data [13] for 
A12Oa. In glass [16], a stress corrosion limit has 
been detected equivalent to a crack velocity of 
3 x 10 -1~ m sec -1. It is considered, therefore, 
that the deviation from expected behaviour of 
the data for specimens with velocities in this 
range may be indicative of a stress corrosion 
limit in AlcOa. It follows that the observed 
failure times for these specimens and the cal- 
culated stresses for 1 sec failure may be larger 
than predicted by the basic theory. The important 
consequence is that the (say) -r = 100000 sec 
line of the SPT diagram may be considered as a 
tentative stress corrosion limit. Experimental 
verification of this would, however, be tedious 
because of the very long experimental times 
involved. 



S T R E N G T H - P R O B A B I L I T Y - T I M E  (SPT)  R E L A T I O N S H I P S  I N  C E R A M I C S  

The use of the SPT diagram for engineering 
design purposes is straightforward. Assuming 
that  the diagram is relevant to a specific applica- 
t ion with regard to stress state and distr ibution,  
environment ,  temperature  and  componen t  size, 
then from the required componen t  lifetime and 
survival probabi l i ty  a safe working stress can be 
estimated. For  example, a componen t  lifetime of 
100 000 sec with a survival probabi l i ty  of 99 
would require the working stress to be < 160 
M N  m-L  Were this value to prove unacceptably 
low, then either re-design of the componen t  to 
reduce the max imum stress or some form of 
proof  test to remove the weaker components  
would be appropriate.  It must  be emphasized 
that  the SPT diagram is valid only for the 
condit ions under  which the specimens are 
tested. For  example, strong variat ions with 
temperature  are expected, part icularly in  those 
ranges where limited plastic flow processes can 
assist crack growth. 
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